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Abstract
A growing number of human-centered applications benefit from
continuous advancements in the emotion recognition technol-
ogy. Many emotion recognition algorithms have been designed
to model multimodal behavior cues to achieve high perfor-
mances. However, most of them do not consider the modu-
lating factors of an individual’s personal attributes in his/her
expressive behaviors. In this work, we propose a Personalized
Attributes-Aware Attention Network (PAaAN) with a novel per-
sonalized attention mechanism to perform emotion recognition
using speech and language cues. The attention profile is learned
from embeddings of an individual’s profile, acoustic, and lexical
behavior data. The profile embedding is derived using linguis-
tics inquiry word count computed between the target speaker
and a large set of movie scripts. Our method achieves the state-
of-the-art 70.3% unweighted accuracy in a four class emotion
recognition task on the IEMOCAP. Further analysis reveals that
affect-related semantic categories are emphasized differently
for each speaker in the corpus showing the effectiveness of our
attention mechanism for personalization.
Index Terms: personal attribute, multimodal emotion recogni-
tion, attention, psycholinguistic norm

1. Introduction
The surge of artificial intelligence has brought major advance-
ments for a wide range of human-centered applications, e.g., hu-
man robotics, personal assistance, and recommendation system
[1, 2, 3]. These technologies rely strongly on the understanding
of human with supportive feedback in order to provide higher
quality personalized experiences. Technology involves affect
sensing, hence, has become crucial as emotion plays a critical
role in human’s decision-making, cognitive process, and social
communication [4, 5]. Numerous algorithms have already been
proposed that learn to recognize emotion from multimodal hu-
mans expressive behavior data. Several recent works have fur-
ther shown a significant improvement in utilizing deep learning
network architecture for modeling speech and language modal-
ities simultaneously for the task of emotion recognition.

Specifically, Poria et al. propose to use multiple kernel
learning with deep convolution neural networks (CNN) to
model speech acoustic and text data for emotion recognition
[6]. Beard et al. present a recursive attention fusion network
to model the complementary effect between acoustic and lexi-
cal data [7]. Most recently, Cho et al. propose to use a multi-
resolution CNN for lexical transcript and long short term mem-
ory network (LSTM) for acoustic features and finally combine
the both using a deep forward neural network [8]. While many
of these algorithms achieve promising recognition accuracies,
none of these multimodal emotion recognition algorithms have
considered the personalized differences at an individual-level.

Individual differences in the emotional expressions result
from a wide of personalized factors. These factors include cat-
egorization attributes and also individualized attributes. Cate-
gorization attributes, such as culture, age, and gender, are well
known meta-factors in affecting the emotion expressions [9, 10,
11]. Individualized attributes, such as personality, motives, and
beliefs, are formed through a long term self-understanding and
socialization process that affects the emotional experiences and
expressions at an individual-level [12, 13, 14]. Other meta-
factors like social status and social role have also been indicated
to shape the emotion regulation strategy for an individual when
experiencing similar circumstances [15, 16].

While personalized emotion recognition system is critical,
only a handful of research has integrated modeling of personal
factors into the recognition algorithms. For example, Stefanie
et al. and Igor et al. develop attribute-specific emotion recog-
nition by simply training on hard-segmented subgroups of data
[17, 18], Sicheng et al. use hypergraph structure to formulate the
relationship of physiological signal and personality for emotion
recognition [19], and more recently, Sagha et al. incorporate
personality trait, age, and gender as a model selection strategy
in task of valence recognition [20]. Developing advanced al-
gorithms that integrate complex modulation of multimodal af-
fective expressions by an individual’s personalized factors is a
crucial next-step to enhance the model capacity.

In this work, we propose a Personalized Attribute-Aware
Attention Network (PAaAN) to perform emotion classification
using speech and text modality. The key idea centers on the
fact that each subject would possess different personalized at-
tributes that could be integrated jointly to the recognition net-
work. Specifically, the PAaAN integrates a re-weighting mech-
anism of personalized attention profile that is jointly optimized
with multimodal attention bi-directional LSTM (BLSTM). The
personalized attention profile is learned jointly from embed-
dings of target subject’s personal profile with each utterance’s
acoustics and lexical embeddings. This unique personal pro-
file embedding is computed as a dot product between the psy-
cholinguistic norm vector of each target speaker and a large
speaker set of movie script corpus; this can be conceptualized
as a high-dimensional representation of a speaker’s personal at-
tribute space. This approach further mitigates the common re-
quirements of obtaining a pre-defined set of personal attribute
classes such as gender, age, personality trait, etc.

We evaluate our framework on a benchmark emotional cor-
pus, the IEMOCAP database [21]. Our PAaAN achieves the
state-of-the-art 70.3% unweighted average recall (UAR) in a
four class emotion recognition task, which is a 5.55% rela-
tive improvement over multimodal BLSTM network without
personalized attention profile. Furthermore, our analysis on
PAaAN reveals an individualized reweighting effect on affect
related word acoustically and textually.
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Figure 1: This is the overall PAaAN framework. We compute dot product of each target speaker’s LIWC features with a large speaker
set of movie scripts to project the target speaker into a personal profile space. Then, we introduce the personalized attention profile to
jointly model inter-modality relation and personalized attributes in a multimodal framework for emotion recognition.

2. Methodology
2.1. Databases

2.1.1. The IEMOCAP Emotion Database

In this work, we use a multimodal dyadic interaction corpus, the
IEMOCAP [21], as our main emotion recognition evaluation
database. It comprises of 12 hours of audio-video recordings
with word alignment and manual transcripts available. There
are a total of 10 different speakers paired in dyads performing
either scripted or improvised hypothetical scenarios. There are
a total of 10039 utterances with each rated by at least three an-
notators. We use a subset of the database to be comparable to
recent multimodal emotion recognition works [8]. It includes a
total of 5531 samples from four emotion classes (angry: 1103,
happiness: 1636, sad: 1084, and neutral: 1708).

2.1.2. The Background Movie Script Databases

Our PAaAN integrates personalized profile into the recognition
framework. The IEMOCAP database only includes 10 speak-
ers, in order to robustly extract representation of personal profile
for each speaker, our framework leverages other large speaker
set corpora with text transcripts. In this work, we gather two
additional background movie script databases each with a large
speaker set. One of them is the Cornell movie dialogs corpus
[22], which includes movie scripts from 5531 distinct acting
roles. The other one is the EmotionLines corpus [23] including
scripts from 656 speakers derived from the TV shows Friends
and private Facebook messenger texts. Both corpora contain
dialogue contents that are similar to the IEMOCAP.

2.2. Acoustic and Textual Representations

2.2.1. Acoustic Features

We extract 45 dimensional low level descriptors (LLDs) in-
cluding 12 dimensional Mel-Frequency Cepstral Coefficients
(MFCCs), fundamental frequency (F0), loudness, voice proba-
bility, zero cross rate along with the first and the second deriva-
tives of MFCCs and loudness using the openSMILE toolbox

[24]. These LLDs are extracted using 60ms frame size and
10ms step size; speaker-wise zscore normalization is applied.
Each time step in our BLSTM corresponds to 4 frames (40ms),
and the input to each time step is the average of these LLDs.

2.2.2. Word Embeddings

Texts in the transcripts used in this work are encoded using the
GloVe word2vec pretrained model that is originally trained on
42 billion tokens and 1.9 million vocabularies [25]. An utter-
ance ofN words is represented as a set of word embedding vec-
tors, U = {w1, w2, ..., wN}, where w is the word embedding
and U ∈ RN×300. Each word is encoded as a 300-dimensional
vector at every time step for the BLSTM model.

2.3. Personalized Attribute-Aware Attention Network

Our complete PAaAN architecture is illustrated in Figure 1. It
includes a dual modality BLSTM with Deep Neural Network
(DNN) as emotion recognition network using both acoustic and
textual features. Each of the BLSTM is learned together with a
novel personalized profile attention mechanism. We will first
describe the derivation of personal profile embedding that is
needed for computing personalized attention for BLSTM recog-
nition networks.

2.3.1. Personal Profile Embedding

An individual speaker’s personal factors would shape the par-
ticular speaker’s speech and language behaviors. In this work,
instead of coming up with pre-defined personal attributes, such
as personality, age, gender, social status, etc, we decide to en-
code personal attributes to a high-dimensional space using the
semantic lexicons (the psycholinguistic norm). Specifically,
we use the ‘Linguistic Inquiry Word Count’ (LIWC-2007) tool
[26], which includes 64 semantic word categories such as stan-
dard linguistic words, words related to psychological processes,
personal concerns, spoken patterns, etc. The LIWC have been
known to be related to a variety of one’s personal attributes such
as age, gender, and personality traits [27, 28].
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Table 1: It summarized the 4-class recognition results in the emotion recognition task

Audio Text A+T Prev1 Prev2 IA+T P-D P-T PAaANWE PAaANLIWC PAaANLC

ang 0.570 0.663 0.657 0.724 0.625 0.666 0.721 0.666 0.697 0.727 0.769
hap 0.527 0.647 0.666 0.675 0.652 0.685 0.718 0.757 0.701 0.721 0.719
neu 0.581 0.584 0.628 0.574 0.696 0.607 0.601 0.559 0.611 0.588 0.591
sad 0.608 0.551 0.666 0.665 0.633 0.705 0.666 0.675 0.714 0.690 0.732

UAR 0.571 0.611 0.654 0.659 0.651 0.666 0.676 0.665 0.681 0.682 0.703

To compute a personal profile embedding vector, gp, we
first perform LIWC counts on the improvised portion of each
speaker in the IEMOCAP database to derive a 64-dimensional
psycholinguistic norm vector per speaker. Each speaker’s per-
sonal factor representation is then derived by computing dot
product between this target speaker’s psycholinguistic norm
vector to the 5987 background speaker’s psycholinguistic norm
vector. This 5987 dimensional vector is termed as the personal
profile embedding, which can be conceptualized as a point in a
high-dimensional personal attribute space characterized by the
psycholinguistic word usage.

2.3.2. Multimodal Emotion Recognition Network

Our recognition network is a dual modality BLSTM networks
with personalized profile attention mechanism feeding into
DNN classification layers. Specifically, for a BLSTM at time
step, t, of modality m with hidden state hm,t = [

←−−
hm,t

⊕−−→
hm,t]

where
←−−
hm,t and

−−→
hm,t denotes the forward and backward hid-

den states, we first summarize the hm,t using a fully connected
layer with hyperbolic tangent activation:

gm,t = tanh(wT
mhm,t + bm) (1)

We can therefore obtain the time-normalized personalized pro-
file attention weight at time t, αt, by applying softmax function
on the following concatenated latent vector gc,t:

gc,t = [gT,t, gA,t, gP,t] (2)

αt =
exp(gc,t)∑T
t exp(gc,t)

(3)

where m = {T,A} denotes text and audio modality. The au-
dio and text attention weights are learned separately using each
modality-specific BLSTM resulting in two attention weights
αA and αT ; however, noted that in deriving gc,t attention
weights for each modality, the inter-modality information is uti-
lized (equation 2). The two modality-specific attention weights
provide additional flexibility in our emotion modeling. After
multiplying these learned personalized attentions back to the
BLSTMs, we can obtain the re-weighted context vector of CA

and CT . The concatenation of CA and CT serves as the repre-
sentation to the DNN layers for emotion classification.

In summary, our proposed PAaAN learns two attention-
based BLSTMs feeding into DNN layers for emotion classifi-
cation task. The time-varying and modality-specific attention
weights are learned by jointly considering the interaction of
inter- behavior modalities (speech and language) with personal
profile embedding mentioned in section 2.3.1.

3. Experimental Setup and Results
3.1. Experimental Setup

In this work, we evaluate the performances on a 4-class emotion
recognition task, and the comparison models are listed:

• Audio: Using single-modal of audio features only
• Text: Using single-modal of word embeddings only
• A+T: Concatenating CA and CT without inter-modality

nor personal attention as a multimodal baseline
• Prev1: A recent multimodal audio and text framework

proposed by Cho et al. [8]
• Prev2: Another multimodal audio and text framework

proposed by Poria et al. [6]
• IA+T: Using inter-modality attention mechanism without

personal attention profile (i.e., gc,t in equation 2 is de-
rived without gP,t)

• P-D: Concatenating personal profile embedding directly
with inter-modality attention based BLSTMs context
vector, CA and CT

• P-T: Concatenating personal profile embedding with au-
dio and word embedding in each BLSTM time step with
inter-modality attention

• PAaANX: Using X-personal profile embedding generat-
ing approach within the PAaAN network

For IA+T, we use the same architecture as PAaAN without per-
sonal profile embedding as a multimodal baseline to examine
the effectiveness of personalize attention profile. P-D and P-T
are different strategies to integrate personal profile embedding
in the network. PAaANX is our proposed framework where X in-
dicates other potential personal profile generation approaches,
i.e., WE is simply the average word embedding computed for
each target speaker’s improvisation transcripts, LIWC indicates
the use of LIWC word count vector of the target speaker di-
rectly, and LC indicates our proposed profile embedding de-
tailed in section 2.3.1.

The BLSTM for audio and text has the same structure,
which includes 128 nodes, and gm,t is of dimension 64. Each
modality-specific BLSTM’s context vector is first fed into a 128
dimensional fully-connected layer then to a 256-node layer af-
ter concatenating the outputs. The final four class recognition is
done using a softmax layer. We use tanh as activation function
for gm,t whereas relu for all other layers. The model is trained
with 50 epochs using 32 as batch size and 0.0001 as learning
rate. The experiments are carried out using leave dyad out cross
validation and the unweighted average recall (UAR) is used as
the evaluation metric.

3.2. Experimental Results

Table 1 summarizes the emotion classification results. Our
proposed PAaANLC achieves the best 70.3% UAR, which im-
proves 5.55% relative compared to the best performing mul-
timodal framework without personal profile embedding (IA+T).
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Figure 2: It shows the individual difference between accumulated attention values from PAaANLC and A+T on the six affect-related
word class usage for each speaker in the IEMOCAP. The upper side distributions are from αA and the lower ones are from αT .

This suggests the importance in modeling personal attributes. In
our multimodal scheme, IA+T achieves an 66.6% UAR outper-
forming the other recent multimodal approaches on the same
database [8, 6], which indicates the better modeling power in
the use of our inter-modality attention mechanism. Also, IA+T

demonstrates an improvement over single modality baseline,
Audio and Text, with 16.64% and 9% relative improvement.

We additionally compare different methods in integrating
the personal profile embedding into the recognition networks.
We report UARs obtained by using the personal vector detailed
in section 2.3.1 with different integration strategies. The re-
sults of P-D and P-T are 67.6% and 66.5%, which are both
3.99% and 5.71% relative worse than our proposed PAaANLC.
The method of P-D treats personal attributes as an additional
static features to be integrated, whereas the method of P-T di-
rectly replicates the personal profile vector at every time step of
BLSTM. P-T performs the worst likely due to the fact that it in-
troduces too much redundancy into the network. PAaANLC out-
performs P-D not only demonstrates the superior performances
of attention-based modeling, but also corroborates with past
knowledge that personal factors do interact with the temporal
dynamics of an individual speaker’s expressive behaviors.

Within our proposed PAaAN framework, we examine dif-
ferent approaches in generating personal profile embedding, gp.
This can be thought as a task in seeking a proper feature space
to represent the underlying personal attributes. We observe that
PAaANWE and PAaANLIWC are comparable in overall accuracy
but behave slightly different between the 4 emotion classes. The
use of LIWC would be more effective for non-neutral emotion,
which is likely due to the composition of the existing LIWC cat-
egories covering mostly affective, cognitive, or perceptive word
semantic class. Furthermore, we observe a significant improve-
ment in angry and sad classes when comparing our PAaANLC

versus PAaANLIWC. Our proposed used of projected embedding
PAaANLC represents personal attributes in a high dimensional
space by computing the similarity to a large set of diverse movie
acting roles. The space constructed by these movie scripted
roles includes a larger personal factor variability and is likely
to provide a more robust space representation with more emo-
tional expressivity.

3.3. Analyses

In this section, we examine the change of modality-specific at-
tention weights between PAaANLC and IA+T on the six affect-
related word class usage of each speaker (Table 2). The
category-wise accumulated attention difference values, i.e., the
values from PAaANLC minus values from A+T are demonstrated

Table 2: The six affect-related word class displayed in Figure 2

1 2 3
Affective Processes Positive Emotions Negative Emotions

4 5 6
Anxiety Anger Sadness

in Figure 2. We align the acoustic frames with the words in an
utterance and sum up the frame-level attention values in αA for
each spoken word as accumulated acoustic attention. Similarly,
accumulated textual attention on word-level can be derived. For
each selected affect-related categories, we then aggregate the
derived accumulated attention values to compute the difference
before and after we integrate the personal profile embedding.

Figure 2 shows the modality-specific attention difference
in these word categories for each subject in the IEMOCAP
database. Generally, these affect-related word categories in αA

increase for PAaANLC while some of them from αT descends
after considering personal attributes. We observe a generally
distinct pattern for each speaker indicating that there may be a
different ‘personalized speech and language baseline’ for each
subject individually; for example, some people might just gen-
erally like to use emotional words in their daily conversation,
the attention weight after considering personal profile embed-
ding should counter-emphasize those instances. A more de-
tailed analysis at the individual-level will still be required.

4. Conclusions
The individual differences between people are known to affect
our multimodal expressive behaviors; however, there is a lack
of appropriate framework that models this intertwining effect
for emotion classification. In this work, we propose PAaANLC

that learns a personalized attention by integrating a speaker-
level attribute space computed using psycholinguistic norm.
Our PAaANLC outperforms the state-of-the-art multimodal, i.e.,
speech and language, emotion recognition on the benchmark
emotion corpus. The introduction of our personal profile vector
can also easily be deployed to many databases where there is no
explicit annotations on speaker-wise personal attributes.

We will continue to evaluate the robustness of our PAaAN
framework on other corpora and also investigate these data-
driven personal profile vector’s relation to known personal at-
tributes, e.g., personality. We hope to further understand the
contributing factors of personal attributes in modulating our
emotionally expressive behaviors to develop personalized emo-
tion sensing technology across human-centered applications.
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